asddwfff
 
Compartir:
Avisos
Vaciar todo
asddwfff
asddwfff
Grupo: Activado
Registrado: 2022-02-22

Sobre Mí

How Does a Metering Pump Work?

Metering pumps, also called dosing pumps, are pumps that are designed to dispense specific amounts of
fluid and measured flow control. They use expanding and contracting chambers to move the liquids. Metering
pumps also have a high level of accuracy over time and can pump a wide range of liquids including
corrosives, acids, and bases, as well as slurries and viscous liquids. They are used in various industries
like manufacturing, agriculture, and medicine. There are a variety of types of metering pumps that work in
different ways. For the purposes of this post, we’ll look at diaphragm and peristaltic <a
href="http://www.depamupumps.com/metering-pump-1" target="_self">metering pumps.

How Diaphragm and Peristaltic Metering Pumps Work

Both types of metering pumps – diaphragm pumps and peristaltic – are very useful and will typically
provide many years of reliable, efficient operation.

Diaphragm Metering Pumps

Diaphragm pumps are positive displacement pumps that move liquids using a reciprocating diaphragm. They
are found to be very reliable because they don’t have internal parts that rub together, creating friction
and leading to wear and tear. Additionally, because they don’t require seals or lubrication in the pump
head, there isn’t a chance of oil vapor contamination or leakage of the media being pumped.

Simple diaphragm pumps have a diaphragm, two valves, a displacement chamber, and a driving mechanism.
The diaphragm is a flexible membrane that vibrates to create suction to move fluid in and out of the
pumping chamber. It is located between the side of the displacement chamber and an attached flange. The two
valves are usually flapper valves or spring-loaded ball valves that are made of the same material as the
diaphragm. They operate by admitting the liquid in and out of the chamber. The driving mechanism is what
activates the diaphragm into operation. There are a number of different driving mechanisms that diaphragm
pumps may use. The two most common are air operated and motor driven.

Air operated diaphragm metering pumps use compressed air to drive a double diaphragm (two diaphragms)
alternatively. A shuttle valve alternates the air flow between the two diaphragms. The flow of the media
that is being pumped is adjusted by how much air pressure is supplied to the pump.

Motor driven diaphragm metering pumps uses the rotary motion of a motor, which is converted to a
reciprocating movement via a cam mechanism, to cause a displacement in the volume of the liquid,
transferring it at a consistent rate.

Peristaltic Metering Pumps

Peristaltic metering pumps, like diaphragm metering pumps, are positive displacement pumps. However,
they operate quite differently. Peristaltic pumps use rotating rollers to squeeze a flexible tube to move
the liquid in a pressurized flow. As the tube is constricted and the low-pressure volume increases, it
creates a vacuum that pulls the liquid into the tube. The liquid is then pushed through the tubing as the
tubing is constricted at several points by the rollers. With each oscillating or rotating motion, the fluid
flows through the tubing. Peristaltic metering pumps are designed as either circular (rotary) or linear.

Benefits of Metering Pumps

Metering pumps, whether diaphragm or peristaltic, provide many benefits to the industries where they
are used. They are reliable for dispersing the exact amount of liquid that is needed accurately and
consistently. Additionally, you will find the following advantages when using metering pumps:

They commonly move low amounts of liquid – Because metering pumps are so accurate and precise, they
are often used to move low amounts of fluid. They are typically measured by their capability to pump
gallons per minute, instead of gallons per hour, which is an industry standard.

They can pump various types of liquid – Metering pumps are able to move a variety of fluids, from thin
to thick, and even hazardous or corrosive chemicals.

They can be used for many different applications – Metering pumps are used in many different
industries including medicine, food processing, agriculture, and manufacturing.

They prevent contamination – Both diaphragm and peristaltic metering pumps are effective in preventing
the media being pumped from contaminating the pump and the workspace.

While metering pumps work effectively for many applications and different liquids, it isn’t
recommended that they be used for moving most types of gases.

Pressure and back pressure

High pressures are no problem in metering systems as long as there is something to
counter them. ProMinent <a href="http://www.depamupumps.com/hydraulic-diaphragm-metering-pump-1"
target="_self">hydraulic diaphragm metering pumps therefore use a hydraulic fluid to create back
pressure. The benefits this brings to the diaphragms become evident very quickly.

The industries in which ProMinent’s hydraulics technology is used:

<ul style="box-sizing: content-box; padding: 0px; border: 0px; float: none; margin-
bottom: 1em !important;" class=" list-paddingleft-2">

Oil/gas production (onshore/offshore)

Refineries

Chemical / petrochemical industry

Pharmaceuticals & cosmetics

Food production

Packaging industry (bottling pumps)

What you can expect

The pumps run. They do this well and for a long time. Your hydraulic control is
very precise and requires only minimal maintenance. The diaphragms are durable and provide consistently
accurate metering. The technology also offers a very high standard of safety: there is a pressure relief
valve in the hydraulic end as protection against overload. The multi-layer diaphragms are equipped with a
diaphragm rupture warning system as standard. So you can be sure that the feed chemicals cannot mix with
the hydraulic oil.

Pump Guide

The choice of pumps is huge: 80 industries, 100,000 <a href="http://www.depamupumps.com/"
target="_self">products and infinite applications. To make it easy to find your ideal metering pump,
ProMinent designed the Pump Guide. In just a few clicks you will find a selection of suitable models.

Here’s how it works

First enter the pump capacity and back pressure. The Pump Guide will then show you all the metering
pumps that match your criteria. You can choose between list view and detail view. The database contains all
solenoid metering pumps, motor-driven metering pumps, process metering pumps and peristaltic pumps from
ProMinent. They are divided into more than 30 different product ranges.

Exactly the right pump

Narrow down your search by clicking on different selection criteria. Do you have a specific industry,
operating mode, medium or viscosity in mind? Or maybe you need a pump for zones at risk of explosion? The
Pump Guide will take you to the pump you need in just a few clicks.

Small-scale reverse osmosis plants that can produce less than 50 m 3 /d are vital for small communities
in villages located in remote areas. The design parameters of such plants involve low flow rate and high-
pressure feed. For such operating conditions, reciprocating pumps are more favorable than centrifugal pumps
because the efficiency of centrifugal pumps in such conditions is reduced extensively. Recently,
reciprocating pumps with energy recovery are presented by several pump companies for desalination
applications. The concept of energy recovery in these pumps is quite similar to that used in pressure
exchangers. In these pumps, the pressurized brine is directed to the back of the pumping pistons which
reduces the pumping motor required power. This work presents a numerical simulation and experimental
analysis for such pumps. The numerical simulation includes a computational fluid dynamics transient
analysis for the used pump. The analysis is presented using both two-dimensional and three-dimensional
models. The effects of the operational and design parameters on the performance of the pump and its
volumetric efficiency are investigated. The results show that increasing the valve spring stiffness
increases the volumetric efficiency. It also shows that increasing the outlet pressure and piston speed
reduces the volumetric efficiency. The most striking result to emerge from the data is that reducing the
valve spring stiffness below a specific value results in large reduction on the volumetric efficiency.
Results of high-
pressure reciprocating pump
’s testing at different operating conditions are evaluated. The results of
the presented numerical simulation were compared with the experimental results at several operating
conditions, and the deviation was less than 10%.

<div jsname="bVEB4e" aria-controls="exacc_tmsMYta-O-nZz7sP76qLkA42" aria-expanded="true" aria-
labelledby="exacc_tmsMYta-O-nZz7sP76qLkA41" role="button" tabindex="0" jsaction="AWEk5c">

What is a pneumatic
diaphragm pump
? An air operated double diaphragm pump is a pneumatic pump that uses a patented air
valve that directs compressed air between two sides of the pump, back and forth. It can operate on regular
compressed air, clean dry air, nitrogen, or even natural gas.

Tipo de usuario

Veterinario/a

Ubicación

Redes Sociales
Actividad del Usuario
0
Mensajes del Foro
0
Temas
0
Preguntas
0
Respuestas
0
Preguntas Comentarios
0
Me gusta
0
Me gustas Recibidos
0/10
Nivel
0
Artículos del Blog
0
Comentarios del Blog
Compartir: